Subring Depth, Frobenius Extensions, and Towers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subring Depth, Frobenius Extensions, and Towers

The minimum depth d B,A of a subring B ⊆ A introduced in the work of Boltje, Danz and Külshammer 2011 is studied and compared with the tower depth of a Frobenius extension. We show that d B,A < ∞ if A is a finite-dimensional algebra and B has finite representation type. Some conditions in terms of depth and QF property are given that ensure that the modular function of a Hopf algebra restricts ...

متن کامل

Subring depth below an ideal

A minimum depth is assigned to a ring homomorphism and a bimodule over its codomain. When the homomorphism is an inclusion and the bimodule is the codomain, the recent notion of depth of a subring in a paper by Boltje-Danz-Külshammer is recovered . Subring depth below an ideal gives a lower bound for BDK’s subring depth of a group algebra pair or a semisimple complex algebra pair.

متن کامل

FTF Rings and Frobenius Extensions

The notion of FTF ring (see Definition 1.1 or Proposition 1.2) captures homological and finiteness properties shared by several classes of rings. Thus coherent rings with left flat-dominant dimension ≥ 1 [3, Corolario 2.2.11] or rings having quasi-Frobenius two-sided maximal quotient ring [7, Proposition 3.6; 3, Teorema 2.3.10] are examples of FTF rings. Moreover, FTF ring and QF-3 ring are rel...

متن کامل

Are Biseparable Extensions Frobenius?

In Secion 1 we describe what is known of the extent to which a separable extension of unital associative rings is a Frobenius extension. A problem of this kind is suggested by asking if three algebraic axioms for finite Jones index subfactors are dependent. In Section 2 the problem in the title is formulated in terms of separable bimodules. In Section 3 we specialize the problem to ring extensi...

متن کامل

Link homology and Frobenius extensions

We explain how rank two Frobenius extensions of commutative rings lead to link homology theories and discuss relations between these theories, Bar-Natan theories, equivariant cohomology and the Rasmussen invariant. AMS Subject Classification: 57M27 Frobenius systems. Suppose ι : R −→ A is an inclusion of commutative rings, and ι(1) = 1. The restriction functor Res : A−mod −→ R−mod has left and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2012

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2012/254791